Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-37259292

RESUMO

Industrial chicory is an important crop for its high dietary fibre content. Besides inulin, chicory taproots contain interesting secondary metabolite compounds, which possess bioactive properties. Hairy roots are differentiated plant cell cultures that have shown to be feasible biotechnological hosts for the production of several plant-derived molecules. In this study, hairy roots of industrial chicory cultivars were established, and their potential as a source of antimicrobial ingredients was assessed. It was shown that hot water extracts of hairy roots possessed antimicrobial activity against relevant human microbes, whereas corresponding chicory taproots did not show activity. Remarkably, a significant antimicrobial activity of hot water extracts of chicory hairy roots towards methicillin-resistant Staphylococcus aureus was observed, indicating a high potential of hairy roots as a host for production of antimicrobial agents.

2.
Biotechnol Bioeng ; 119(10): 2831-2841, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35822204

RESUMO

Hairy root systems have proven to be a viable alternative for recombinant protein production. For recalcitrant proteins, maximizing the productivity of hairy root cultures is essential. The aim of this study was to optimize a Brassica rapa rapa hairy root process for secretion of alpha- l-iduronidase (IDUA), a biologic of medical value. The process was first optimized with hairy roots expressing eGFP. For the biomass optimization, the highest biomass yields were achieved in modified Gamborg B5 culture medium. For the secretion induction, the optimized secretion media was obtained with additives (1.5 g/l PVP + 1 mg/l 2,4- d + 20.5 g/l KNO3 ) resulting in 3.4 fold eGFP secretion when compared to the non-induced control. These optimized conditions were applied to the IDUA-expressing hairy root clone, confirming that the highest yields of secreted IDUA occurred when using the defined additive combination. The functionality of the IDUA protein, secreted and intracellular, was confirmed with an enzymatic activity assay. A > 150-fold increase of the IDUA activity was observed using an optimized secretion medium, compared with a non-induced medium. We have proven that our B. rapa rapa hairy root system can be harnessed to secrete recalcitrant proteins, illustrating the high potential of hairy roots in plant molecular farming.


Assuntos
Produtos Biológicos , Brassica , Produtos Biológicos/metabolismo , Brassica/genética , Brassica/metabolismo , Agricultura Molecular , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
Food Res Int ; 157: 111440, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761680

RESUMO

The nutritional value of Rowan (Sorbus aucuparia L.) and Arctic bramble (Rubus arcticus L.) plant cell cultures in terms of protein and dietary fibre contents is very good, ∼ 18-22% and âˆ¼ 28-29% on dry matter basis, respectively. The aim of this study was to evaluate various processing methods and formulation to modulate sensory profiles of these plant cell cultures for food purposes. For fresh unprocessed plant cell cultures, treatment with sugar or sugar in combination with citric acid significantly improved the mouthfeel and flavour. The sugar and sugar + citric acid treated plant cell culture samples were perceived more moist, softer, less sandy and they had a less coarse mouthfeel when compared to untreated plant cell cultures. Freeze-drying produced sweet, intense, berry-like flavour and resulted in most promising sensory attributes for the studied plant cell cultures. When freeze-dried Rowan plant cell culture was further processed, the most balanced sweetness/sourness ratio was reached by using 9.5 % (w/w) sucrose and 0.1 % (w/w) citric acid or 4.8 % w/w fructose and 0.1 % w/w citric acid. We conclude that formulation and processing can greatly improve the performance of plant cell cultures for food use.


Assuntos
Sorbus , Paladar , Técnicas de Cultura de Células , Ácido Cítrico , Fibras na Dieta , Açúcares
4.
Sci Total Environ ; 808: 151990, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-34843779

RESUMO

A novel food such as plant cell culture (PCC) is an important complementary asset for traditional agriculture to tackle global food insecurity. To evaluate environmental impacts of PCC, a life cycle assessment was applied to tobacco bright yellow-2 and cloudberry PCCs. Global warming potential (GWP), freshwater eutrophication potential (FEUP), marine eutrophication potential, terrestrial acidification potential (TAP), stratospheric ozone depletion, water consumption and land use were assessed. The results showed particularly high contributions (82-93%) of electricity consumption to GWP, FEUP and TAP. Sensitivity analysis indicated that using wind energy instead of the average Finnish electricity mix reduced the environmental impacts by 34-81%. Enhancement in the energy efficiency of bioreactor mixing processes and reduction in cultivation time also effectively improved the environmental performance (4-47% reduction of impacts). In comparison with other novel foods, the environmental impacts of the PCC products studied were mostly comparable to those of microalgae products but higher than those of microbial protein products produced by autotrophic hydrogen-oxidizing bacteria. Assayed fresh PCC products were similar or close to GWP of conventionally grown food products and, with technological advancements, can be highly competitive.


Assuntos
Agricultura , Meio Ambiente , Animais , Técnicas de Cultura de Células , Eutrofização , Aquecimento Global , Estágios do Ciclo de Vida
5.
Pharmaceuticals (Basel) ; 14(9)2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34577641

RESUMO

Chicory (Cichorium intybus L.) is an important industrial crop cultivated mainly to extract the dietary fiber inulin. However, chicory also contains bioactive compounds such as sesquiterpene lactones and certain polyphenols, which are currently discarded as waste. Plants are an important source of active pharmaceutical ingredients, including novel antimicrobials that are urgently needed due to the global spread of drug-resistant bacteria and fungi. Here, we tested different extracts of chicory for a range of bioactivities, including antimicrobial, antifungal and cytotoxicity assays. Antibacterial and antifungal activities were generally more potent in ethyl acetate extracts compared to water extracts, whereas supercritical fluid extracts showed the broadest range of bioactivities in our assays. Remarkably, the chicory supercritical fluid extract and a purified fraction thereof inhibited both methicillin-resistant Staphylococcus aureus (MRSA) and ampicillin-resistant Pseudomonas aeruginosa IBRS P001. Chicory extracts also showed higher antibiofilm activity against the yeast Candida albicans than standard sesquiterpene lactone compounds. The cytotoxicity of the extracts was generally low. Our results may thus lead to the development of novel antibacterial and antifungal preparations that are both effective and safe for human use.

6.
Plant Biotechnol J ; 19(12): 2442-2453, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34270859

RESUMO

Chicory (Cichorium intybus var. sativum) is an industrial crop species cultivated for the production of a fructose polymer inulin, which is used as a low-calorie sweetener and prebiotic. Besides, inulin chicory taproots also accumulate sesquiterpene lactones (STLs). These are bitter tasting compounds, which need to be removed during inulin extraction, resulting in additional costs. In this work, we describe chicory lines where STL accumulation is almost completely eliminated. Genome editing using the CRISPR/Cas9 system was used to inactivate four genes that encode the enzyme that performs the first dedicated step in STL synthesis, germacrene A synthase (CiGAS). Chicory lines were obtained that carried null mutations in all four CiGAS genes. Lines lacking functional CiGAS alleles showed a normal phenotype upon greenhouse cultivation and show nearly complete elimination of the STL synthesis in the roots. It was shown that the reduction in STLs could be attributed to mutations in genetically linked copies of the CiGAS-short gene and not the CiGAS-long gene, which is relevant for breeding the trait into other cultivars. The inactivation of the STL biosynthesis pathway led to increase in phenolic compounds as well as accumulation of squalene in the chicory taproot, presumably due to increased availability of farnesyl pyrophosphate (FFP). These results demonstrate that STLs are not essential for chicory growth and that the inhibition of the STL biosynthesis pathway reduced the STL levels chicory which will facilitate inulin extraction.


Assuntos
Sesquiterpenos , Sistemas CRISPR-Cas/genética , /metabolismo , Lactonas/metabolismo , Lactonas/farmacologia , Melhoramento Vegetal , Sesquiterpenos/metabolismo , Sesquiterpenos de Germacrano
7.
Plant Biotechnol J ; 19(10): 1921-1936, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34181810

RESUMO

The fight against infectious diseases often focuses on epidemics and pandemics, which demand urgent resources and command attention from the health authorities and media. However, the vast majority of deaths caused by infectious diseases occur in endemic zones, particularly in developing countries, placing a disproportionate burden on underfunded health systems and often requiring international interventions. The provision of vaccines and other biologics is hampered not only by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, but also by challenges caused by distribution and storage, particularly in regions without a complete cold chain. In this review article, we consider the potential of molecular farming to address the challenges of endemic and re-emerging diseases, focusing on edible plants for the development of oral drugs. Key recent developments in this field include successful clinical trials based on orally delivered dried leaves of Artemisia annua against malarial parasite strains resistant to artemisinin combination therapy, the ability to produce clinical-grade protein drugs in leaves to treat infectious diseases and the long-term storage of protein drugs in dried leaves at ambient temperatures. Recent FDA approval of the first orally delivered protein drug encapsulated in plant cells to treat peanut allergy has opened the door for the development of affordable oral drugs that can be manufactured and distributed in remote areas without cold storage infrastructure and that eliminate the need for expensive purification steps and sterile delivery by injection.


Assuntos
Artemisia annua , Doenças Transmissíveis , Preparações Farmacêuticas , Animais , Humanos , Agricultura Molecular , Plantas Comestíveis
8.
Plant Biotechnol J ; 19(10): 1901-1920, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34182608

RESUMO

Infectious diseases, also known as transmissible or communicable diseases, are caused by pathogens or parasites that spread in communities by direct contact with infected individuals or contaminated materials, through droplets and aerosols, or via vectors such as insects. Such diseases cause ˜17% of all human deaths and their management and control places an immense burden on healthcare systems worldwide. Traditional approaches for the prevention and control of infectious diseases include vaccination programmes, hygiene measures and drugs that suppress the pathogen, treat the disease symptoms or attenuate aggressive reactions of the host immune system. The provision of vaccines and biologic drugs such as antibodies is hampered by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, particularly in developing countries where infectious diseases are prevalent and poorly controlled. Molecular farming, which uses plants for protein expression, is a promising strategy to address the drawbacks of current manufacturing platforms. In this review article, we consider the potential of molecular farming to address healthcare demands for the most prevalent and important epidemic and pandemic diseases, focussing on recent outbreaks of high-mortality coronavirus infections and diseases that disproportionately affect the developing world.


Assuntos
COVID-19 , Doenças Transmissíveis , Doenças Transmissíveis/epidemiologia , Humanos , Pandemias/prevenção & controle , SARS-CoV-2
9.
Plant Cell Rep ; 39(12): 1655-1668, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32892290

RESUMO

KEY MESSAGE: Sustainability and safety aspects of plant cell cultures as food are presented. Applicability of dairy side streams as carbon source and use of natural growth enhancers in cultivation are shown. Biotechnologically produced cellular products are currently emerging to replace and add into the portfolio of agriculturally derived commodities. Plant cell cultures used for food could supplement current food production. However, still many aspects need to be resolved before this new food concept can enter the market. Issues related to sustainability and safety for human consumption are relevant for both consumers and regulators. In this study, two plant cell cultures, deriving from arctic bramble (Rubus arcticus) and birch (Betula pendula), were cultivated using lactose-rich dairy side streams as alternative carbon sources to replace sucrose. Biomasses were comparable to those of original plant cell culture media when up to 83% and 75% of the original sucrose was replaced by these side streams for arctic bramble and birch cell cultures, respectively. Furthermore, nutritional composition or sensory properties were not compromised. Synthetic plant growth regulators were replaced by natural components, such as coconut water and IAA for several subculture cycles. Finally, it was shown that only trace amounts of free growth regulators are present in the cells at the harvesting point and assessment by freshwater crustaceans assay indicated that toxicity of the cells was not exceeding that of traditionally consumed bilberry fruit.


Assuntos
Betula/citologia , Técnicas de Cultura de Células/métodos , Células Vegetais , Rubus/citologia , Aminoácidos/análise , Animais , Carboidratos/análise , Carboidratos/química , Meios de Cultura/química , Daphnia/efeitos dos fármacos , Inocuidade dos Alimentos , Humanos , Odorantes , Células Vegetais/química , Reguladores de Crescimento de Plantas/análise , Reguladores de Crescimento de Plantas/metabolismo , Sacarose/metabolismo , Desenvolvimento Sustentável , Testes de Toxicidade/métodos
10.
Front Plant Sci ; 11: 33, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194578

RESUMO

Hairy roots derived from the infection of a plant by Rhizobium rhizogenes (previously referred to as Agrobacterium rhizogenes) bacteria, can be obtained from a wide variety of plants and allow the production of highly diverse molecules. Hairy roots are able to produce and secrete complex active glycoproteins from a large spectrum of organisms. They are also adequate to express plant natural biosynthesis pathways required to produce specialized metabolites and can benefit from the new genetic tools available to facilitate an optimized production of tailor-made molecules. This adaptability has positioned hairy root platforms as major biotechnological tools. Researchers and industries have contributed to their advancement, which represents new alternatives from classical systems to produce complex molecules. Now these expression systems are ready to be used by different industries like pharmaceutical, cosmetics, and food sectors due to the development of fully controlled large-scale bioreactors. This review aims to describe the evolution of hairy root generation and culture methods and to highlight the possibilities offered by hairy roots in terms of feasibility and perspectives.

11.
Planta Med ; 84(9-10): 743-748, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29518814

RESUMO

In this study, three semisynthetic betulonic acid-based compounds, 20(29)-dihydrolup-2-en[2,3-d]isoxazol-28-oic acid, 1-betulonoylpyrrolidine, and lupa-2,20(29)-dieno[2,3-b]pyrazin-28-oic acid, were studied in biotransformation experiments using Nicotiana tabacum and Catharanthus roseus cell suspension cultures. Biotransformation was performed using cyclodextrin to aid dissolving poorly water-soluble substrates. Several new derivatives were found, consisting of oxidized and glycosylated (pentose- and hexose-conjugated) products.


Assuntos
Catharanthus/metabolismo , Ácido Oleanólico/análogos & derivados , Biotransformação , Células Cultivadas , Ciclodextrinas , Glicosilação , Ácido Oleanólico/química , Ácido Oleanólico/metabolismo , Oxirredução , Espectrometria de Massas em Tandem
12.
Front Plant Sci ; 9: 45, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29434617

RESUMO

Plant cells constitute an attractive platform for production of recombinant proteins as more and more animal-free products and processes are desired. One of the challenges in using plant cells as production hosts has been the costs deriving from expensive culture medium components. In this work, the aim was to optimize the levels of most expensive components in the nutrient medium without compromising the accumulation of biomass and recombinant protein yields. Wild-type BY-2 culture and transgenic tobacco BY-2 expressing green fluorescent protein-Hydrophobin I (GFP-HFBI) fusion protein were used to determine the most inexpensive medium composition. One particularly high-accumulating BY-2 clone, named 'Hulk,' produced 1.1 ± 0.2 g/l GFP-HFBI in suspension and kept its high performance during prolonged subculturing. In addition, both cultures were successfully cryopreserved enabling truly industrial application of this plant cell host. With the optimized culture medium, 43-55% cost reduction with regard to biomass and up to 69% reduction with regard to recombinant protein production was achieved.

13.
Front Microbiol ; 8: 2009, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29081772

RESUMO

By 2050, the world would need to produce 1,250 million tonnes of meat and dairy per year to meet global demand for animal-derived protein at current consumption levels. However, growing demand for protein will not be met sustainably by increasing meat and dairy production because of the low efficiency of converting feed to meat and dairy products. New solutions are needed. Single cell protein (SCP), i.e., protein produced in microbial and algal cells, is an option with potential. Much of the recent interest in SCP has focused on the valorisation of side streams by using microorganisms to improve their protein content, which can then be used in animal feed. There is also increased use of mixed populations, rather than pure strains in the production of SCP. In addition, the use of methane as a carbon source for SCP is reaching commercial scales and more protein-rich products are being derived from algae for both food and feed. The following review addresses the latest developments in SCP production from various organisms, giving an overview of commercial exploitation, a review of recent advances in the patent landscape (2001-2016) and a list of industrial players in the SCP field.

14.
Front Plant Sci ; 7: 1486, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27746806

RESUMO

Plants remain a major source of new drugs, leads and fine chemicals. Cell cultures deriving from plants offer a fascinating tool to study plant metabolic pathways and offer large scale production systems for valuable compounds - commercial examples include compounds such as paclitaxel. The major constraint with undifferentiated cell cultures is that they are generally considered to be genetically unstable and cultured cells tend to produce low yields of secondary metabolites especially over time. Hairy roots, a tumor tissue caused by infection of Agrobacterium rhizogenes is a relevant alternative for plant secondary metabolite production for being fast growing, able to grow without phytohormones, and displaying higher stability than undifferentiated cells. Although genetic and metabolic stability has often been connected to transgenic hairy roots, there are only few reports on how a very long-term subculturing effects on the production capacity of hairy roots. In this study, hairy roots producing high tropane alkaloid levels were subjected to 16-year follow-up in relation to genetic and metabolic stability. Cryopreservation method for hairy roots of Hyoscyamus muticus was developed to replace laborious subculturing, and although the post-thaw recovery rates remained low, the expression of transgene remained unaltered in cryopreserved roots. It was shown that although displaying some fluctuation in the metabolite yields, even an exceedingly long-term subculturing was successfully applied without significant loss of metabolic activity.

15.
Front Plant Sci ; 6: 1035, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26635853

RESUMO

Bioconversion, i.e., the use of biological systems to perform chemical changes in synthetic or natural compounds in mild conditions, is an attractive tool for the production of novel active or high-value compounds. Plant cells exhibit a vast biochemical potential, being able to transform a range of substances, including pharmaceutical ingredients and industrial by-products, via enzymatic processes. The use of plant cell cultures offers possibilities for contained and optimized production processes which can be applied in industrial scale. Raspberry ketone [4-(4-hydroxyphenyl)butan-2-one] is among the most interesting natural flavor compounds, due to its high demand and significant market value. The biosynthesis of this industrially relevant flavor compound is relatively well characterized, involving the condensation of 4-coumaryl-CoA and malonyl-CoA by Type III polyketide synthase to form a diketide, and the subsequent reduction catalyzed by an NADPH-dependent reductase. Raspberry ketone has been successfully produced by bioconversion using different hosts and precursors to establish more efficient and economical processes. In this work, we studied the effect of overexpressed RiZS1 in tobacco on precursor bioconversion to raspberry ketone. In addition, various wild type plant cell cultures were studied for their capacity to carry out the bioconversion to raspberry ketone using either 4-hydroxybenzalacetone or betuligenol as a substrate. Apparently plant cells possess rather widely distributed reductase activity capable of performing the bioconversion to raspberry ketone using cheap and readily available precursors.

16.
Biotechnol Bioeng ; 111(2): 336-46, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24030771

RESUMO

Recombinant pharmaceutical proteins expressed in hairy root cultures can be secreted into the medium to improve product homogeneity and to facilitate purification, although this may result in significant degradation if the protein is inherently unstable or particularly susceptible to proteases. To address these challenges, we used a design of experiments approach to develop an optimized induction protocol for the cultivation of tobacco hairy roots secreting the full-size monoclonal antibody M12. The antibody yield was enhanced 30-fold by the addition of 14 g/L KNO3 , 19 mg/L 1-naphthaleneacetic acid and 1.5 g/L of the stabilizing agent polyvinylpyrrolidone. Analysis of hairy root cross sections revealed that the optimized medium induced lateral root formation and morphological changes in the inner cortex and pericycle cells, indicating that the improved productivity was at least partially based on the enhanced efficiency of antibody secretion. We found that 57% of the antibody was secreted, yielding 5.9 mg of product per liter of induction medium. Both the secreted and intracellular forms of the antibody could be isolated by protein A affinity chromatography and their functionality was confirmed using vitronectin-binding assays. Glycan analysis revealed three major plant complex-type glycans on both forms of the antibody, although the secreted form was more homogeneous due to the predominance of a specific glycoform. Tobacco hairy root cultures therefore offer a practical solution for the production of homogeneous pharmaceutical antibodies in containment.


Assuntos
Anticorpos/metabolismo , Agricultura Molecular/métodos , Raízes de Plantas/metabolismo , Tecnologia Farmacêutica/métodos , Anticorpos/química , Anticorpos/genética , Anticorpos/isolamento & purificação , Meios de Cultura/química , Glicosilação , Raízes de Plantas/genética , Polissacarídeos/análise , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , /genética
17.
Curr Pharm Des ; 19(31): 5622-39, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23394556

RESUMO

Secondary products are small molecular weight compounds produced by secondary metabolic pathways in plants. They are regarded as non-essential for normal growth and development but often confer benefits such as defense against pathogens, pests and herbivores or the attraction of pollinators. Many secondary products affect the survival and/or behavior of microbes, insects and mammals and they often have useful pharmacological effects in humans. Most secondary products can only be obtained as extracts from medicinal plants, many of which grow slowly and are difficult to cultivate. Chemical synthesis, although possible in principle, is often impractical or uneconomical due to the complexity of their molecular structures. The large scale production of secondary products by metabolic engineering has therefore been investigated in a number of heterologous systems including microbes, plant cell/organ cultures, and intact plants. In this critical review of production platforms for plant secondary products, we discuss the advantages and constraints of different approaches and the impact of post-genomics technologies on gene discovery and metabolite analysis. We highlight bottlenecks that remain to be overcome before the routine exploitation of secondary products can be achieved for the benefit of mankind.


Assuntos
Engenharia Metabólica/métodos , Plantas Geneticamente Modificadas/metabolismo , Plantas/metabolismo , Animais , Humanos , Peso Molecular , Extratos Vegetais/metabolismo , Plantas/genética , Plantas Medicinais/genética , Plantas Medicinais/metabolismo
18.
Curr Pharm Des ; 19(31): 5640-60, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23394561

RESUMO

Molecules derived from plants make up a sizeable proportion of the drugs currently available on the market. These include a number of secondary metabolite compounds the monetary value of which is very high. New pharmaceuticals often originate in nature. Approximately 50% of new drug entities against cancer or microbial infections are derived from plants or micro-organisms. However, these compounds are structurally often too complex to be economically manufactured by chemical synthesis, and frequently isolation from naturally grown or cultivated plants is not a sustainable option. Therefore the biotechnological production of high-value plant secondary metabolites in cultivated cells is potentially an attractive alternative. Compared to microbial systems eukaryotic organisms such as plants are far more complex, and our understanding of the metabolic pathways in plants and their regulation at the systems level has been rather poor until recently. However, metabolic engineering including advanced multigene transformation techniques and state-of-art metabolomics platforms has given us entirely new tools to exploit plants as Green Factories. Single step engineering may be successful on occasion but in complex pathways, intermediate gene interventions most often do not affect the end product accumulation. In this review we discuss recent developments towards elucidation of complex plant biosynthetic pathways and the production of a number of highvalue pharmaceuticals including paclitaxel, tropane, morphine and terpenoid indole alkaloids in plants and cell cultures.


Assuntos
Produtos Biológicos/isolamento & purificação , Engenharia Metabólica/métodos , Plantas/metabolismo , Animais , Produtos Biológicos/farmacologia , Biotecnologia/métodos , Técnicas de Cultura de Células , Engenharia Genética/métodos , Humanos , Metabolômica/métodos , Células Vegetais/metabolismo , Plantas/genética
19.
J Biotechnol ; 157(2): 287-94, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22178236

RESUMO

The aim of this study was to use whole cell catalysts as tools for modification of selected resin acids in order to obtain value-added functional derivatives. The enzymatic bioconversion capacities of two plant species were tested towards dehydroabietic acid. Dehydroabietic acid (DHA) is an abundant resin acid in conifers, representing a natural wood protectant. It is also one of the constituents found in by-products of the kraft chemical pulping industry. DHA was fed to tobacco (Nicotiana tabacum) and Madagascar periwinkle (Catharanthus roseus) plant cell and tissue cultures and bioconversion product formation was monitored using NMR analysis. Both plant species took up DHA from culture medium, and various types of typical detoxification processes occurred in both cultures. In addition, diverse responses to DHA treatment were observed, including differences in uptake kinetics, chemical modification of added substrate and changes in overall metabolism of the cells. Interestingly, Catharanthus roseus, a host species for pharmaceutically valuable terpenoid indole alkaloids, exhibited a very different bioconversion pattern for exogenously applied DHA than tobacco, which does not possess a terpenoid indole pathway. In tobacco, DHA is readily glycosylated in the carbonyl group, whereas in periwinkle it is proposed that a cytochrome P450-catalyzed enzymatic detoxification reaction takes place before the formation of glycosylated product.


Assuntos
Abietanos/metabolismo , Biotransformação , Catharanthus/metabolismo , /metabolismo , Abietanos/química , Reatores Biológicos , Catálise , Meios de Cultura , Sistema Enzimático do Citocromo P-450/metabolismo , Glicosilação , Cinética , Espectroscopia de Ressonância Magnética , Alcaloides de Triptamina e Secologanina/metabolismo , Especificidade da Espécie
20.
Proc Natl Acad Sci U S A ; 108(14): 5891-6, 2011 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-21436041

RESUMO

The phytohormones jasmonates (JAs) constitute an important class of elicitors for many plant secondary metabolic pathways. However, JAs do not act independently but operate in complex networks with crosstalk to several other phytohormonal signaling pathways. Here, crosstalk was detected between the JA and abscisic acid (ABA) signaling pathways in the regulation of tobacco (Nicotiana tabacum) alkaloid biosynthesis. A tobacco gene from the PYR/PYL/RCAR family, NtPYL4, the expression of which is regulated by JAs, was found to encode a functional ABA receptor. NtPYL4 inhibited the type-2C protein phosphatases known to be key negative regulators of ABA signaling in an ABA-dependent manner. Overexpression of NtPYL4 in tobacco hairy roots caused a reprogramming of the cellular metabolism that resulted in a decreased alkaloid accumulation and conferred ABA sensitivity to the production of alkaloids. In contrast, the alkaloid biosynthetic pathway was not responsive to ABA in control tobacco roots. Functional analysis of the Arabidopsis (Arabidopsis thaliana) homologs of NtPYL4, PYL4 and PYL5, indicated that also in Arabidopsis altered PYL expression affected the JA response, both in terms of biomass and anthocyanin production. These findings define a connection between a component of the core ABA signaling pathway and the JA responses and contribute to the understanding of the role of JAs in balancing tradeoffs between growth and defense.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/fisiologia , Alcaloides/biossíntese , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Perfilação da Expressão Gênica , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...